ÉTUDE DE LA VINDOLININE II (1). CORRÉLATION AVEC LA (-) VINCADIFFORMINE

P. Rasoanaivo, N. Langlois et P. Potier*

Institut de Chimie des Substances Naturelles, C.N.R.S., 91190-Gif/Yvette(France)
(Received in France 5 June 1974; received in UK for publication 6 September 1974)

La RMN du 13 C de la vindolinine et de ses dérivés a permis récemment de réviser la structure initialement assignée à cet alcaloïde $^{(2)}$ et de lui attribuer la formule plane $\underline{1}^{(1)}$. La configuration relative a été déterminée par analyse aux Rayons $X^{(3)}$ et complétée par diverses transformations fonctionnelles.

La vindolinine, traitée par de l'iode en milieu THF/H₂0/Na₂CO₃(4), donne naissance à un composé (Rdt 70%) dont les données spectroscopiques s'accordent avec la structure 2. $[SM, pics à m/e : 462 (M^{+*}), 335 (pic de base), 142, 127. IR (CHCl₃) <math>\nu_{cm}^{-1}$: 1680, 1610. UV : 228 (12000), 298 (12000), 330 (14100). RMN : 1,63, \underline{d} (J=6,5 Hz), 3H, C₁₈-H ; 3,92, \underline{q} (J=6,5 Hz), 1H, C₁₉-H; 9,08, \underline{s} , 1H, Na-H]. Ce composé conduit, par hydrogénation en présence de Ni Raney, à un mélange de \underline{g} (Rdt 53%) et \underline{g} (Rdt 11%) identiques en tous points respectivement à la (-) tabersonine et à la (-) vincadifformine. Ceci fixe la configuration absolue des centres asymétriques de la vindolinine \underline{g} , \underline{g} (l'exception des carbones 16 et 19 impliqués dans la réaction précédente.

Dans différentes espèces de <u>Catharanthus</u> $^{(6)}$ et dans <u>Melodinus balansae</u> $^{(7)}$, la vindolinine est accompagnée d'un alcaloïde très voisin auquel la structure épi-19 vindolinine (formule révisée 5) a été attribuée $^{(7)}$. L'examen des modèles moléculaires et la comparaison des déplacements chimiques, δ , des protons des méthyles (C_{18} -H) de 1 et 5 et de leurs dérivés dihydrogénés (Pd/C; éthanol) 6 et 7 (Tableau) permet d'écarter l'hypothèse formulée antérieurement $^{(7)}$ selon laquelle les faibles valeurs de δ observées dans certains composés scraient dues à l'influence de la double liaison $\delta^{14}(8)$. D'autre part, on note une différence de déplacements chimiques encore supérieure pour la résonance des protons C_{18} -H des composés 8 et 9 (préparés à partir de 1 et 5: HCHO/AcOH/NaBH $_3$ CN; LiAlH $_4$), ce qui exclut une influence éventuelle du méthoxycarbonyle. Un rôle possible de l'azote Nb doit être également écarté (modèles moléculaires) et les faibles valeurs de δ des méthyles des composés de la série épi-19 (5, 7 et 9) s'interprètent mieux comme la conséquence de l'anisotropie du noyau aromatique. L'ensemble des données précédentes permet

composé	; <u>1</u>	<u>5</u>	<u>6</u>	7	<u>8</u>	9
δ C ₁₈ -H ppm (5)	0,94	0,57	0,85	0,52	1,03	0,40

d'attribuer à la vindolinine la configuration 19R.

D'autre part, les spectres de RMN du ¹H des dérivés Na-acétylés <u>11</u> et <u>12</u> de la vindolinine <u>1</u> et de l'épi-16 vindolinine <u>10</u> (<u>1</u> + CH₃ONa - <u>10</u>) présentent une différence essentielle. On note, dans le spectre de <u>11</u>, un quadruplet (proton X d'un système ABX, J=12,5 et 6,3 Hz) centré à ⁴,73 ppm alors que, dans le spectre de <u>12</u>, aucun signal n'apparaît dans cette région. Ce quadruplet peut être attribué au proton C₁₆-H de <u>11</u>, en accord avec les expériences de découplage (9). La situation de ce proton par rapport au groupe Na-acétyle, liée à la configuration 16R, est responsable de son déplacement chimique anormalement élevé ; dans la Na-acétyl épi-16 vindolinine <u>12</u>, le proton C₁₆-H résonne à 3,2 ppm.

$$1 R_1 = H; R_2 = H; R_3 = CO_2 CH_3$$

$$8 R_1 = CH_3; R_2 = H; R_3 = CH_2OH$$

$$19 R_1 = H; R_2 = I; R_3 = CO_2 CH_3; dihydro 14,15$$

$$21 R_{4} = H; R_{2} = Br; R_{3} = CO_{2}CH_{3}; dihydro 14,15$$

$$3 R_{1}=H; R_{2}=CO_{2}CH_{3}; R_{3}=H$$

$$\frac{14a}{14,15}$$
 R₁=H; R₂=CO₂CH₃; R₃=I; dihydro 14,15.

$$\frac{20}{14,15}$$
 R₁=H; R₂=CO₂CH₃; R₃=Br; dihydro

18a et 18b

Le réarrangement en milieu oxydant du squelette vindolinine en squelette tabersonine a été également réalisé à partir des composés $\underline{6}$, $\underline{7}$ et $\underline{13}$ (épi-16 dihydro vindolinine); on obtient dans les trois cas un mélange des composés iodés $\underline{14a}$ et $\underline{14b}$ (vraisemblablement mélange d'épimères en C_{19} mis en évidence par RMN du 1 H; même Rf en CCM) qui conduit (H_2/Ni Raney) aux composés $\underline{4}$ (Rdt 37%) et $\underline{15}$ (Rdt 26%. RMN: $\underline{4}$,50, \underline{d} . \underline{d} (J_{ab} =18 et J_{bc} =1,3 Hz), 1H, C_{18} - H_b ; $\underline{4}$,71, \underline{d} . \underline{d} (J_{ac} =11,3 et J_{bc} =1,3 Hz), 1H, C_{18} - H_c ; 5,48, \underline{d} . \underline{d} ($J_{=}$ 18 et 11,3 Hz), 1H, C_{19} -H). Ce dernier fournit la (-) vincadifformine $\underline{4}$ par hydrogénation (PtO₂, éthanol).

Dans les mêmes conditions la Na-acétyl dihydro-14,15 vindolinine 16 reste inchangée; ceci met en évidence le rôle de la nucléophilie de l'azote Na dans ce type de réarrangement. Par contre, la présence d'un méthoxycarbo-nyle en C₁₆ n'est pas nécessaire; en effet, le composé 17 (6 + LiAlH₄; TsCl/pyridine; LiAlH₄ — 17) donne, dans les mêmes conditions, deux dérivés iodés isomères 18a et 18b séparables par chromatographie préparative sur couche de silice 18a: SM, pics à m/e: 420 (M⁺), 293 (pic de base). UV: 268 (3000), déplacement à 300 nm en milieu acide. RMN: 1,41, d (J±6,5 Hz, 3H et 1,50, d (J=6,5 Hz), 3H, C₁₆-CH₃ et C₁₈-H; 4,25, q (J=6,5 Hz), 1H, C₁₉-H. 18b: SM identique à celui de 18a. UV: 270 (3500) déplacement à 292 nm en milieu acide. RMN: 1,45, d (J=6,5 Hz), 3H et 1,74, d (J=6,5 Hz), 3H, C₁₆-CH₃ et C₁₈-H; 3,96, q (J=6,5 Hz), 1H, C₁₉-H.

L'hypothèse d'un mécanisme radicalaire a été envisagée; cependant, le cours de la réaction effectuée sur <u>6</u> ne semble pas modifié en présence de dit.-butyl-2,6 phénol et en absence d'oxygène et de lumière. En remplaçant l'iode par le chlorure d'iode, la réaction conduit aux mêmes dérivés iodés <u>14</u> et s'accompagne de substitution sur le noyau aromatique en position <u>10</u> avec formation du composé <u>19</u>. De même, avec le N-bromosuccinimide dans le chlorure de méthylène, on obtient les composés <u>20</u> et <u>21</u>.

Ces résultats peuvent s'interpréter par le schéma réactionnel ci-dessous, faisant intervenir un intermédiaire haloamine \underline{b} , le mécanisme exact (ionique ou radicalaire) étant, pour le moment, difficile à préciser.

La stéréochimie de cette réaction (obtention selon les cas d'un ou deux épimères en C₁₉) reste à éclaircir. Cependant, ce type de réarrangement, et la déhydro-halogénation des composés 14 sont intéressants du point de vue biogénétique. En effet, le composé 15 se révèle un intermédiaire fonctionnalisé important à partir duquel diverses cyclisations sont à l'étude. La transformation de la (-) vincadifformine 4 en vincamine, alcaloïde régulateur de la circulation cérébrale a déjà été réalisée (10) et valorise encore la corrélation de la vindolinine 1 avec l'alcaloïde 4 dont le rendement n'a toutefois pas été optimisé.

REMERCIEMENTS

Nous remercions M. J. LE MEN pour la fourniture des échantillons de référence et les Drs S.K. KAN, P. GONORD, C. DURET, M. SAUZADE (Institut d'Electronique Fondamentale, 91,0rsay) grâce à qui l'enregistrement de certains spectres de RMN à 240 MHz et les expériences de découplage ont pu être réalisés.

RÉFÉRENCES ET NOTES

- 1) A. AHOND, M.M. JANOT, N. LANGLOIS, G. LUKACS, P. POTIER, P. RASOANAIVO, M. SANGARÉ, N. NEUSS, M. PLAT, J. LE MEN, E.W. HAGAMAN et E. WENKERT, J. Am. Chem. Soc., 96, 633 (1974).
- C. DJERASSI, M. CEREGHETTI, H. BUDZIKIEWICZ, M.-M. JANOT, M. PLAT et J. LE MEN, Helv. Chim. Acta, 47, 827 (1964).
- 3) C. RICHE, et C. PASCARD-BILLY, Acta Cryst., à paraître.
- 4a) M.-M. JANOT et R. GOUTAREL, Bull. Soc. Chim. Fr., 2234 (1962).
- 4b) S.A. MONTI, Thèse de Doctorat, Juin 1964, Mass. Institute of Technology.
- 5) Les spectres UV (λ max nm (t)) ont été enregistrés en solution dans l'éthanol; les spectres de RMN du ¹H dans CDCl₃ (δ ppm) avec le TMS comme référence interne (δ=0), les singulets, doublets quadruplets et doublets de doublets étant respectivement désignés par les lettres s, d, q et d·d.
- 6a) N.R. FARNSWORTH, communication personnelle.
- 6b) L. DIATTA, P. RASOANAIVO et coll., travaux non publiés.
- 7) H. MEHRI, M. KOCH, M. PLAT et P. POTIER, Ann. Pharm. Fr., 30, 643 (1972).
- 8) Cette remarque est, semble-t-il, également valable pour la déhydrotuboxénine, la tuboxénine et leurs épimères en C₁₉ [A.A. GORMAN, N.J. DASTOOR, M. HESSE, W. Von PHILIPSBORN, U. RENNER et H. SCHMID, Helv. Chim. Acta, 52, 33 (1969)] qui possèdent le même squelette que la vindolinine; ce fait a été démontré lors de l'étude des spectres de RMN du ¹³C de la pléiomutinine alcaloïde bis indolique isolé de Gonioma malagasy (Apocynacées): G. LUKACS, P. RASOANAIVO et coll., à paraître.
- 9) Comme l'indiquent les fragmentations observées dans les spectres de masse de $\underline{11}$ et $\underline{12}$, le squelette de $\underline{1}$ n'a pas subi de modification lors de la Na-acétylation.
- 10) G. HUGEL, J. LÉVY et J. LE MEN, C. R. Acad. Sci. Paris, 274, 1350 (1972).